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What is libEnsemble

I libEnsemble is a library to coordinate the concurrent evaluation of
dynamic ensembles of calculations

I Developed to use massively parallel resources to accelerate the
solution of design, decision, and inference problems

I Developed to expand the class of problems that can benefit from
increased computational concurrency levels

I libEnsemble uses a manager to allocate work to various workers

I A libEnsemble worker is the smallest indivisible unit to perform
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libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f

sim_f: Evaluates a simulation (i.e., user-defined function) using input
defined by gen_f

alloc_f: Decides whether (or not) sim_f or gen_f should be called
(and with what input/resources) as workers become available
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libEnsemble dependencies
I Python 3.5+, NumPy, psutil

If using MPI communications in libEnsemble
I An MPI implementation (e.g., MPICH) built with shared/dynamic

libraries

I mpi4py v2.0.0 or above

I Can also use multiprocessing or TCP for libEnsemble
communications

I Example gen_f/sim_f functions require NLopt, PETSc, SciPy,
Tasmanian, etc.
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libEnsemble overview
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Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)
I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures

I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)
I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations

I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)
I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output

I Nonfatal handling (i.e., graceful degradation/fail soft) of failed
simulation/generation calculation

I Ability to recover hardware resources from
libEnsemble-/generation-/simulation-terminated calculations

I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)
I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation

I Ability to recover hardware resources from
libEnsemble-/generation-/simulation-terminated calculations

I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)
I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations

I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)
I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I Simulation/generation checkpoint and restart

I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,
Theta/ALCF)

I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)

I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)
I Thousands of concurrent workers

6 of 16
.



OPAL particle accelerator simulations on 1024 Theta
nodes
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Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell
you which runs fail and start other work

I Don’t have to write your own kills, just complete libEnsemble
templates

I Want to add concurrency to a generator (e.g., multiple local
optimizers.)
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Why libEnsemble and not. . . ?

Swift: (the parallel scripting language)
I “Can run million programs, thousands at a time, launching

hundreds per second”
I Require writing your generators in Swift’s scripting language
I Difficult to tightly couple generation of inputs and future/active

running simulations
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libEnsemble modes: centralized or distributed
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Timing libEnsemble overhead
I Time for libEnsemble to sample/evaluation 30×(workers) points

I Tons of system-dependent caveats
I 32 nodes × 36 cores = 1152-1 workers
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Use cases

I A user wants to optimize a function that depends on a simulation
I The simulation is already using parallel resources, but not a large

fraction of some computer
I libEnsemble can coordinate the concurrent evaluation of the

simulation sim_f at various parameter values and gen_f would
return candidate parameter values (possibly after each sim_f output)

Naturally, combinations of use cases is supported as well
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Use cases

I A user has a gen_f that produces different meshes to be used within
a sim_f

I Given the sim_f output, gen_f will refine a mesh or produce a new
mesh

I libEnsemble can ensure that the calculated meshes can be used by
multiple simulations without requiring movement of data

Naturally, combinations of use cases is supported as well

13 of 16
.



Use cases

I A user wants to evaluate a simulation sim_f at parameters sampled
from a set of parameter values

I Many parameter sets will cause the simulation to fail
I libEnsemble can stop unresponsive evaluations, and recover

computational resources for future evaluations
I gen_f can update the sampling after discovering regions where

evaluations of sim_f fail

Naturally, combinations of use cases is supported as well
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Use cases

I A user has a simulation sim_f that requires calculating multiple
expensive quantities, some of which depend on other quantities

I libEnsemble can observe intermediate quantities in order to stop
related calculations and preempt future calculations associated with
a poor parameter values

Naturally, combinations of use cases is supported as well
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Use cases

I A user wishes to identify multiple local optima for a sim_f
I libEnsemble can use the points from the APOSMM gen_f to

identify optima

Naturally, combinations of use cases is supported as well

13 of 16
.



Use cases

I A user wishes to identify multiple local optima for a sim_f
I libEnsemble can use the points from the APOSMM gen_f to

identify optima

Naturally, combinations of use cases is supported as well

13 of 16
.



Problem setup

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective

I Derivatives of f may or may not be available

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine

I Possibly have a specialized local optimization method for f
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APOSMM
Iteration: 0; r_k: Inf
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APOSMM
Iteration: 1; r_k: 0.743
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APOSMM
Iteration: 2; r_k: 0.743
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APOSMM
Iteration: 3; r_k: 0.689
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APOSMM
Iteration: 4; r_k: 0.643
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APOSMM
Iteration: 5; r_k: 0.605
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APOSMM
Iteration: 6; r_k: 0.605
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APOSMM
Iteration: 7; r_k: 0.605
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APOSMM
Iteration: 8; r_k: 0.605
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APOSMM
Iteration: 9; r_k: 0.605
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APOSMM
Iteration: 10; r_k: 0.605
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APOSMM
Iteration: 35; r_k: 0.605
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APOSMM
Iteration: 36; r_k: 0.605
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APOSMM
Iteration: 37; r_k: 0.589
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APOSMM
Iteration: 38; r_k: 0.574
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APOSMM
Iteration: 39; r_k: 0.560
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APOSMM
Iteration: 40; r_k: 0.548
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APOSMM
Iteration: 41; r_k: 0.536
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APOSMM
Iteration: 42; r_k: 0.525
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APOSMM
Iteration: 43; r_k: 0.515
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APOSMM
Iteration: 44; r_k: 0.497
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APOSMM
Iteration: 45; r_k: 0.480
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Closing Remarks

I We have a growing set of use cases and examples

I Let us know if you have examples you’d like to see

I https://github.com/Libensemble/libensemble
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